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We report a hydrodynamic analysis of the long-time behavior of the linear and angular velocity autocorre-
lation functions of an isolated colloid particle constrained to have quasi-two-dimensional motion, and compare
the predicted behavior with the results of lattice-Boltzmann simulations. Our analysis uses the singularity
method to characterize unsteady linear motion of an incompressible fluid. For bounded fluids we construct an
image system with a discrete set of fundamental solutions of the Stokes equation from which we extract the
long-time decay of the velocity. For the case that there are free slip boundary conditions at walls separated by
H particle diameters, the time evolution of the parallel linear velocity and the perpendicular rotational velocity
following impulsive excitation both correspond to the time evolution of a two-dimensional �2D� fluid with
effective density �2D=�H. For the case that there are no slip boundary conditions at the walls, the same types
of motion correspond to 2D fluid motions with a coefficient of friction �=�2� /H2 modulo a prefactor of order
1, with � the kinematic viscosity. The linear particle motion perpendicular to the walls also experiences an
effective frictional force, but the time dependence is proportional to t−2, which cannot be related to either pure
3D or pure 2D fluid motion. Our incompressible fluid model predicts correct self-diffusion constants but it does
not capture all of the effects of the fluid confinement on the particle motion. In particular, the linear motion of
a particle perpendicular to the walls is influenced by coupling between the density flux and the velocity field,
which leads to damped velocity oscillations whose frequency is proportional to cs /H, with cs the velocity of
sound. For particle motion parallel to no slip walls there is a slowing down of a density flux that spreads
diffusively, which generates a long-time decay proportional to t−1.
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I. INTRODUCTION

The molecular chaos assumption, used by Boltzmann as a
justification for treating successive binary collisions in a di-
lute gas as independent dynamical events, leads to the pre-
diction that the velocity autocorrelation function of a mol-
ecule decays exponentially. For many years that functional
form for the decay was widely assumed to be the same for a
molecule in a dense liquid. In 1970 Alder and Wainwright �1�
demonstrated, from molecular dynamics simulations, that in
a hard sphere fluid at long time the velocity autocorrelation
function decays algebraically, i.e., with a power law depen-
dence on time. They interpreted the long-time algebraic de-
cay using a hydrodynamic analysis. That analysis showed
that the momentum of a molecule decays by two mecha-
nisms. These mechanisms are emission of a sound wave that
rapidly carries away a fraction of the initial momentum and
does not contribute at long time, and creation of a velocity
field u that at long time satisfies the diffusion equation �tu
���2u, thereby generating a dimension dependent long-
time decay of the form ��t�−d/2 in d dimensions, where �
=� /� is the kinematic viscosity, � is the shear viscosity, and
� the liquid density. The diffusive mode is also associated
with the creation of vortices that interact back with the mov-
ing molecule in a fashion that decreases the rate of decay of
the molecular velocity.

A similar prediction pertains to the case of an isolated
colloid particle suspended in an unbounded fluid, with dy-
namics described by the Stokes equation. In an unbounded

colloid suspension, the time scales on which the sound
propagation mode and the diffusive mode influence the de-
cay of the velocity autocorrelation function are very widely
separated, and the former only influences the short time de-
cay of the velocity autocorrelation function of a colloid par-
ticle �2�. However, in a bounded colloid suspension, in the
limit that the separation of the confining walls is a small
multiple of the colloid diameter, the time scales for these
modes of decay are not grossly different and the temporal
decay of the velocity autocorrelation function is rather com-
plex. Frenkel and co-workers �3,4� have examined the dy-
namics of a colloid particle suspended in a fluid confined by
rigid walls. They showed that, on a hydrodynamic time scale,
the velocity autocorrelation function of a colloid particle has
a long-time tail whose physical origin and sign are different
from that found in an unbounded fluid. Specifically, they
showed, from lattice-Boltzmann computer simulations, that
at long time the velocity autocorrelation function of the col-
loid particle decays with a negative algebraic tail. They ac-
counted for this temporal behavior using a simple mode-
coupling theory that exploits the fact that the sound wave
generated by a moving particle becomes diffusive.

This paper is concerned with the hydrodynamic descrip-
tion of the long-time tails of the linear and rotational velocity
autocorrelation functions of a colloid particle suspended in a
liquid and confined by two planar walls. It builds on the
results of a lattice-Boltzmann simulation study of the transi-
tion from quasi-two-dimensional to three-dimensional one
particle hydrodynamics that we have previously reported �5�.
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Our analysis complements that of Frenkel and co-workers in
several respects. In particular, we analyze the velocity oscil-
lations found in our simulations for the case of linear motion
of a colloid perpendicular to the walls, we provide explicit
formulas for the long-time tails of the rotational velocity
autocorrelation functions for different boundary conditions at
the confining walls, and we examine the wall separation de-
pendence of the several autocorrelation function long-time
decays.

In the work reported in this paper we use the singularity
method to obtain precise expressions describing the long-
time decays of the linear and rotational velocity autocorrela-
tion functions of an isolated particle confined between paral-
lel plates. To account for the wall contributions we construct
an image system consisting of a discrete set of fundamental
solutions to the Stokes equation. We compare these results
with those obtained from lattice-Boltzmann simulations for a
spherical particle midway between two parallel plates �re-
sults reported in Ref. �5��, for different boundary conditions
and types of motion. We find that for some types of motion
confinement of the fluid can give rise to sound mode contri-
butions to the long-time decay of the velocity autocorrelation
function that are not captured by the singularity analysis. The
density perturbation caused by an initial particle velocity
gives rise to a sound mode whose evolution is governed by a
damped wave equation. The characteristic time scale of this
process is determined by the speed of sound and in an un-
bounded fluid this mode does not contribute to the long-time
tail of the velocity autocorrelation function. In a confined
fluid, for particle motion perpendicular to the walls, density
oscillations are generated by the sound modes, with fre-
quency proportional to the speed of sound and inversely pro-
portional to the separation of the walls, the decay of which is
determined by the kinematic viscosity. In the case of particle
motion parallel to walls at which the no slip boundary con-
dition holds, the sound mode contributions become diffusive
and give rise to a negative long-time tail of the velocity
autocorrelation function with form −t−2 �4�.

II. LONG-TIME VELOCITY AUTOCORRELATION
FUNCTION

We obtain the linear and angular velocity autocorrelation
functions indirectly from the time relaxation of a particle
velocity after application of an initial impulsive force. The
two quantities are related through the fluctuation-dissipation
relation �FD� �5�. For the linear velocity the FD relation is

Vi�t�
Vi�0�

=
�Vi�t�Vi�0��

�Vi
2�

, �1�

where Vi is the Cartesian component of a particle’s linear
velocity. The same relation obtains for the angular velocity
�i�t�. The angular brackets �¯� denote an equilibrium en-
semble average where �Vi

2�=kBT /M and ��i
2�=kBT / I with M

and I the mass and moment of inertia of a particle, respec-
tively.

The long-time behavior of the velocity autocorrelation
function is governed by the diffusion of fluid motion to large

distances where the force exerted by the particle appears at
leading order as a singularity. The singularity representing
linear motion is a point force, and that representing angular
motion a couplet, that is, the lowest order multipole gener-
ated by differentiating a point force. Hydrodynamic singu-
larities set off impulsively are characterized by a power law
time decay of the form t−n/2, where n increases with increas-
ing multipole order. For the case of an impulsive point force
in three-dimensional �3D� fluid the decay is of the form
�t−3/2 and for an impulsive couplet the decay is of the form
�t−5/2. To account for the influence of the wall on the hydro-
dynamics of a particle in a bounded fluid we construct an
image system consisting of a discrete set of fundamental so-
lutions of the Stokes equations. This treatment of the bound-
ing walls disregards the boundary conditions at a particle
surface.

III. LONG-TIME BEHAVIOR ASSOCIATED WITH
A POINT FORCE IN AN UNBOUNDED FLUID

We define a time dependent point force bf�t���x−x0�,
where x0 is the location of a point force and bf�t� is the time
dependent vector strength such that f�t	0�=0. For t
0 and
u sufficiently small this point force generates fluid flow �un-
steady Stokes flow� that is determined by the continuity
equation for an incompressible fluid and the Stokes equation:

� · u = 0,

��tu = ��2u − �p + bf�t���x − x0� , �2�

where p is the pressure.
To solve for u�x , t� in Eq. �2� for t
0 we Fourier trans-

form in space the Stokes flow and we get

k · uk = 0, �tuk + �k2uk = ikpk + bf�t� .

By multiplying the Stokes equation by k and using the con-
tinuity equation we get the expression for pressure,

pk =
ib · k

k2 f�t� .

Noting that e−�k2t�t�e�k2tuk�=�tuk+�k2uk, the resulting
Stokes flow is

ui�x,t� =
bj

�2��d�
� dk	�ij −

kikj

k2 
eik·�x−x0�

� �
0

t

dsf�s�e−�k2�t−s�, �3�

where we have used the Einstein convention to sum over
Cartesian coordinates, and where d denotes dimensionality.
The advantage of formulating a velocity flow using an unde-
fined time function f�t� is that it allows a universal definition
of a singularity independent of how the singularity strength
varies with time. In Fourier space the point force tensor has

components Ŝij =�ij −kikj /k2. The higher order singularities
are obtained by differentiating eik·�x−x0� inside the Fourier
integral with respect to x. If f�t� is the Heaviside function,
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lim
t→�
�

0

t

dsf�s�e�k2�s−t� = 1/�k2

and Eq. �3� reduces to the steady state point force flow. Al-
ternatively, if f�t�=e−it,

lim
t→�
�

0

t

dsf�s�e�k2�s−t� = e−it/��k2 − i�

and Eq. �3� reduces to the oscillatory point force flow. For
the impulsive force, f�t�=��t�, the solution for the velocity is

ui�x,t� =
bj

�
� 1

4��t
�d/2

�	e−R2
−

1

2

��d/2,R2�
Rd 
�ij+

��d/2 + 1,R2�
Rd

XiXj

�X�2� .

�4�

Alternatively, the flow can be represented in terms of the
tensor, ui=bjSij, where Sij is extracted from Eq. �4�. Later in
the paper we refer to the definition of Sij. In Eq. �4� Xi= �xi

−x0,i�, R= �X� /�4�t, and ��n ,x�=�0
xdttn−1e−t is the lower in-

complete gamma function. In the limit x→x0 the tensor term
inside the curly brackets reduces to the constant d−1

d and the
flow is

ui�x0,t� =
d − 1

d

bi

�
� 1

4��t
�d/2

. �5�

At long time Vi�t→��=ui�x0 , t�, i.e., the decay of the
particle’s linear velocity is the same as the decay of the ve-
locity field induced by a point force whose strength deter-
mines the particle velocity at t=0. The FD relation, Eq. �1�,
relates this flow to the linear velocity autocorrelation func-
tion �LVACF�,

�T�t → �� = �Vi�t → ��Vi�0�� � �Vi
2�

d − 1

d

M

�
� 1

4��t
�d/2

.

�6�

A similar result was derived in Ref. �8�. A more precise de-
scription would give �→�+D, where D is the diffusion co-
efficient �9,10�. However, it is usual that D�� and then Eq.
�6� correctly describes the physics of particle velocity decay.

IV. LONG-TIME BEHAVIOR ASSOCIATED WITH
A COUPLET IN AN UNBOUNDED FLUID

When rotational motion of a particle is excited by an im-
pulsive torque, the induced fluid flow at long time reduces to
that created by an impulsive couplet. We obtain the impul-
sive couplet directly from the impulsive point force derived
in Eq. �4�. A couplet is a special case of a point force doublet
singularity obtained by differentiating a point force tensor,
Bijk=�kSij �6,7�. The resulting flow generated by a point
force doublet is ui=Bijkdjk, where d is the strength matrix. A
point force doublet reduces to a couplet Cij when the
strength matrix d is antisymmetric. Using Eq. �4� we obtain
for the flow generated by an impulsive point force doublet

ui�x,t� = �
djk

�
� 1

4��t
��d+2�/2	− 2e−R2

+
��d/2 + 1,R2�

Rd+2 

�Xk�ij +

��d/2 + 1,R2�
Rd+2 �Xi� jk + Xj�ik�

− 2
��d/2 + 2,R2�

Rd+2

XiXjXk

�X�2 � . �7�

If the matrix d is antisymmetric �in particular dik=− 1
2�ijkLj�,

the expression for the flow reduces to

ui�x,t� =
�

�
� 1

4��t
��d+2�/2

e−R2
�ijkLjXk,

from which we extract the angular velocity at x=x0,

i�x0,t� = Li
�

�
� 1

4��t
��d+2�/2

. �8�

At long time �i�t→��=i�x0 , t�, where ��t� is the angular
velocity of a particle. In Eq. �8� the strength vector is L
= I��0�. The corresponding angular velocity autocorrelation
function �AVACF� is

�R�t → �� = ��i
2��

I

�
� 1

4��t
��d+2�/2

. �9�

V. LONG-TIME BEHAVIOR ASSOCIATED WITH A POINT
FORCE IN A BOUNDED FLUID

Bounded flow associated with a given singularity can be
represented as a superposition of the flow generated by that
singularity plus a discrete set of flows that correspond to
fundamental solutions of the Stokes equation chosen so as to
generate the desired boundary conditions at the wall. For a
single planar wall this representation can be achieved by in-
troducing nonphysical singularities �image singularities� out-
side the physical region �5–7�. This method is the same as
that frequently used to determine the influence of boundaries
on the field in electrostatics problems. In the application to
hydrodynamic flow problems, determination of image singu-
larities is not straightforward for the case of no slip boundary
conditions. Blake �11� showed that for steady Stokes flow
due to a point force confined by a planar no slip wall, the
image consists of three fundamental solutions: a point force,
a potential dipole, and a point force doublet. On the other
hand, determination of the image singularity is straightfor-
ward for free slip boundary conditions. In this case the image
singularity forms mirror symmetry with the physical singu-
larity across the planar wall, so the image is the same as the
physical singularity with proper orientation.

For a fluid bounded by two parallel walls, representing a
solution as a discrete set of fundamental solutions of the
Stokes equation has more limited applicability. For example,
for the flow generated by a point force between two no slip
walls this representation is not feasible and the solution re-
quires integral representation �12�. This limitation does not
apply to flow under free slip boundary conditions. Here the
image series contains an infinite number of discrete funda-
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mental solutions anchored to an infinite number of sites.
However, all the singularities in the series are the same as the
physical singularity, so the series is well defined. Such is
generally the case for any fundamental solution whose image
is the same as the physical singularity for fluid bounded by a
single wall. For no slip boundary conditions that solution is a
couplet since the image is also a couplet rotating in the op-
posite direction �13�.

It needs to be determined if the same procedure carries
over to unsteady Stokes flow. For free slip boundary condi-
tions unsteady flow does not change anything as the mirror
symmetry argument is still valid. For no slip boundary con-
ditions the situation is more complex. In Ref. �14� it was
shown that for oscillating flow the image system for a point
force near a no slip wall cannot be constructed as a discrete
set of fundamental solutions, although it is possible for
steady Stokes flow. In this work we construct a discrete im-
age series for unsteady Stokes flow for singularities between
two walls that admit of such construction. In this section we
construct the image system for an impulsive point force mid-
way between two parallel free slip walls. Two modes of mo-
tion are investigated: parallel and perpendicular to the walls.
For convenience we choose the x3 axis to run perpendicular
to the walls. The wall separation is H. For the parallel motion
the vector strength is b=bx̂1 and the parallel flow is u� =u1.
Expressing the velocity in terms of a tensor, ui= �8��−1Sijbj,
the parallel flow at the singularity for the case of a single
wall a distance h away is

u�
f =

b1

8�
�S11�0,0,0� + S11�0,0,2h�� ,

and for the flow between two plates with separation H

u�
f f =

b1

8�
�

n=−�

�

S11�0,0,nH� ,

where Sij is extracted from Eq. �4� and the superscript f
denotes the free slip boundary condition. For the single wall
case no qualitative change is expected in the functional form
of the long-time decay and it can be shown that the prefactor
of the functional form only increases by 2, as has been dem-
onstrated in Ref. �15�. On the other hand, the infinite sum-
mation term for the two walls case is expected to produce a
different functional dependence of the long-time decay. Sub-
stituting for Sij, the flow at x=x0 is

u�
f f�x0,t� =

2

3

b

�
� 1

4��t�3/2

�
n=−�

�

g�
f f	 n

��

 , �10�

where

g�
f f =

3

2
e−x2

−
3

4

��3/2,x2�
�x�3

and �=4�t /H2 is the reduced time. Two contributions are
distinguished in Eq. �10�; the first represents the time decay
of unbounded 3D flow, u3D, and the summation accounts for
wall contributions, �g�

f f =G�
f f. In the limit �→0, G�

f f →1,
since at the initial time or at large plate separation 3D flow
is recovered. To extract the long-time behavior we use

the transformation �n=−�
� f�n�=�−�

� dxf�x��n=−�
� ��x−n� and

�n=−�
� ��x−n�=�m=−�

� ei2�mx. The function G�
f f can now be ex-

pressed in the form

G�
f f��� = �

m=−�

� �
−�

�

dxg�
f f	 x

��

ei2�mx. �11�

The mode m=0 determines the long-time decay. In fact, it is
the only mode that gives algebraic decay; the remaining
modes produce exponential decay. The resulting long-time
decay of the LVACF is

��
T,f f�t → �� = �V�

2�
1

2

M

�H
� 1

4��t
� . �12�

Equation �12� represents the algebraic decay of a 2D un-
bounded fluid with the effective 2D density �2D=�H. The
function G�

f f drives a crossover from 3D to 2D fluid behavior.
Note that the t−1 algebraic decay of the velocity autocorrela-
tion function implies that the diffusion coefficient is unde-
fined �divergent�.

We now use the results of the lattice Boltzmann simula-
tions of the behavior of a single spherical particle between
two parallel walls, reported in Ref. �5�, to test the analytical
expressions derived above. In Fig. 1 we plot ��

T,f f for a
spherical particle confined between two walls with slip
boundary conditions, as obtained from the lattice Boltzmann
simulations and normalized by the long-time decay described
by Eq. �12�. At long time the two functions are seen to con-
verge. In Fig. 2 we plot the function G�

f f and its long-time
2D-like limiting behavior as a function of reduced time �. It
is interesting that in the intermediate time, between the 3D-
and 2D-like behavior, G�

f f 	1, indicating that the 3D→2D
crossover is not a straightforward process and initially the
walls contribute the effective friction to the fluid motion. The
2D-like fluid behavior becomes fully developed for ��0.5.
In addition in Fig. 2 we compare the analytical and simula-
tion results for the ratio ��

T,f /�3D
T �t→�� for a sphere con-

fined between two free slip walls with separation H=1.5�.
This wall separation is not much larger than the particle di-
ameter �, and the excluded volume condition at the wall that

0 1 2τ
0

0.2

0.4

0.6

0.8

1

φ

=

T
(t

)
/ φ

=

T
(t

−>

8)

simulation, H=1.5σ
free-slip

FIG. 1. ��
T,f f for a spherical particle midway between two par-

allel free slip plates obtained from the lattice-Boltzmann simulation
�5� normalized by the long-time decay in Eq. �12�. �=4�t /H2 is the
reduced time.
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is accounted for in the simulations but not in the analytical
model leads to disagreement with the predictions of the point
force singularity model.

To gain better insight of the confinement contributions on
a particle motion, it is helpful to consider the case of a point
force inside a quasi-one-dimensional square channel moving
parallel to the walls with free slip boundary conditions. For
the point force placed equidistant from each wall, the func-
tion G� is

G���� = �
m
�

−�

�

d2rg�
f f	 r

��

ei2�r·m, �13�

where m=m1x̂+m2ŷ, with mi denoting integers, corresponds
to the reciprocal lattice vector of a discrete image system
distributed in space in a square lattice. The lowest algebraic
mode, m=0, vanishes �in agreement with Eq. �5� for d=1�
and, consequently, the long-time behavior is determined by
higher order exponential modes. Physically this means that
the channel confinement prevents the formation of a vorticity
and the walls give rise to the effective friction force. The
resulting long-time decay of the LVACF for parallel motion
inside a square channel with free slip boundary conditions is

��
T�t → �� = �V�

2�
M

�

4��

H3 ��1

2
,
4�2�t

H2 � , �14�

In Eq. �14�, ��n ,x�=�x
�d��n−1e−� is the upper incomplete

gamma function. The asymptotic series representation of this
gamma function,

��n,x� = xn−1e−x�1 +
�n − 1�

x
+

�n − 1��n − 2�
x2 + ¯� ,

is semiconvergent �16,17�; although it diverges as an infinite
series, when x is large an optimal number of terms can be
used to obtain any desired degree of approximation. Then for
x large, writing ��n ,x��xn−1e−x, Eq. �14� can be further re-
duced to the form

��
T,f f�t → �� = �V�

2�
M

�

4

H2� e−4�2�t/H2

�4��t�1/2� . �15�

Next we investigate linear motion perpendicular to two
walls at which there is free slip. The strength vector is now
perpendicular to the walls, b=bx̂3. For a single wall at a
distance h

u�
f =

b3

8�
�S33�0,0,0� − S33�0,0,2h�� ,

and for two walls separated by a distance H, when the point
force is midway between the walls,

u�
f f =

b3

8�
�

n=−�

�

�− 1�nS33�0,0,nH� .

When the particle motion is perpendicular to the walls, even
when there is only a single wall the algebraic decay of the
velocity autocorrelation function is altered since the leading
terms cancel and the asymptotic decay is then determined by
the next term �t−5/2 �15�. For the case of fluid interaction
with two walls, the function G�

f f��� that appears in u�
f f

=u3DG�
f f takes the form

G�
f f = �

n=−�

� g�
f � 2n

��
� − g�

f � 1
��
	2n + 1 −

2�̂

H

�� ,

where

g�
f �x� =

3

2
e−x2

−
3

4

��3/2,x2�
�x�3

+
3

2

��5/2,x2�
�x�3

.

We do not limit our investigation to the case that the

singularity is located midway between the two walls, so �̂ is
a displacement from the midplane position. Applying the
Fourier decomposition to the alternating periodic delta func-
tion, we find that the lowest mode m=0 vanishes and the
next two lowest modes, m=−1,1, generate exponential long-
time decay. The corresponding long-time behavior of the
LVACF is

��
T,f f�t → �� = �V�

2 �
M

�

�

2H3��− 1,
�2�t

H2 �
�	1 − cos�� −

2��̂

H
�
 . �16�

The incomplete gamma function can be further reduced in
the asymptotic limit to the form

��
T,f f�t → �� = �V�

2 �
M

�

H

2�3� e−�2�t/H2

�2t2 �
�	1 − cos�� −

2��̂

H
�
 .

The time decay is slowest when the particle is midway be-
tween the walls.

In Fig. 3 we plot ��
T,f f obtained from the lattice-

Boltzmann simulations for a spherical particle midway be-
tween two free slip walls �5� normalized by the long-time
decay in Eq. �16�, and in Fig. 4 we plot the function G�

f f. The
time relaxation exhibits rather complex multitime scale be-

0 1 2τ
0

1

2

G

=ff

simulation, H=1.5σ
point force
point force, m=0

free-slip

FIG. 2. G�
f f �defined by u� =u3DG�� for linear motion between

two free slip plates as a function of the reduced time �=4�t /H2.
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havior. In addition to the long-time decay described by Eq.
�16� there are damped oscillations not captured by the con-
fined incompressible fluid model. The frequency of oscilla-
tions ��tcs /H� is related to the wall separation and the speed
of sound, cs �see Fig. 5�. This behavior can be traced back to
the wave equation of the density perturbation in an un-
bounded fluid. In a linear fluid the compressibility condition
�t�−�0� ·u=0 leads to a damped wave equation for the evo-
lution of a perturbation of the density,

�tt� = cs
2�2� + 	4

3
� + �
�2�t� ,

where � is the bulk viscosity. On the other hand, the coupling
between the density flux and the velocity field is of different
nature for parallel motion. In Refs. �3,4� the case of motion
of a sphere along the long axis of a cylinder and parallel
motion of a sphere between two walls with no slip boundary
conditions have been investigated. For this motion, the evo-
lution of the density perturbation is governed by the diffu-
sion equation, rather than the wave equation, with diffusion
coefficient determined by the effective friction caused by the
no slip boundary conditions at the walls. The initial density
perturbation introduced by an impulsive force causes a back

flow that produces a negative long-time decay with form �
−t−2.

For the case that the particle motion is parallel to and
midway between the plates, the velocity component perpen-
dicular to the walls vanishes in the midplane and the linear
incompressible hydrodynamic equation reduces to

�tu� = ���
2u� −

1

�
��p + ��

�2u�

�x3
2 �

x3=0

,

which is the equation of motion of a 2D fluid with additional
term ��2u� /�x3

2. When the fluid is subject to free slip bound-
ary conditions this term vanishes at long time and the equa-
tion of motion of a 2D fluid is retrieved. On the other hand,
when the fluid is subject to no slip boundary conditions this
term at long time represents a friction force ��2u� /�x3

2��u�

�19�. We show in the next section that for the case of rota-
tional motion of the particle the friction coefficient is �
=�2� /H2 �which agrees with that for the parallel motion
�18��. Based on this intuitive description, we expect the long-
time decay of the velocity parallel to no slip walls to be

u�
nn = A

b

�H

e−�2�/H2

4��t
,

where the constant A is of order 1. For a compressible linear
fluid the density then would satisfy the equation

�tt� +
�2�

H2 �t� = cs
2��

2� + 	4

3
� + �
��

2�t� .

If the friction coefficient is large this equation reduces to the
diffusion equation

�t� =
cs

2H2

�2�
��

2� .

The exact value for the diffusion coefficient obtained and
confirmed by simulation in Refs. �3,4� is cs

2H2 / �12��, which
has the same functional dependence on the relevant system
parameters but differs by a numerical constant. The intuitive
model thus does capture the essential physics of the situation
being described.
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FIG. 5. ��
T,f f as a function of tcs /H for a spherical particle

midway between two free slip plates from the lattice-Boltzmann
simulation normalized by the long-time decay in Eq. �16�.
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between two free slip plates from the lattice-Boltzmann simulation
�5� normalized by the long-time decay in Eq. �16�. The data for
H=4.1 is valid within �	0.3. At ��0.3 the finite size effects be-
come visible.
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VI. LONG-TIME BEHAVIOR ASSOCIATED WITH
A COUPLET SOURCE IN A BOUNDED FLUID

We now investigate the time decay of the velocity auto-
correlation function corresponding to motion induced by a
couplet rotating along an axis perpendicular to the walls. The
image technique for this motion is applicable to no slip
boundary conditions. A single free slip wall does not change
the functional dependence of the long-time behavior associ-
ated with perpendicular rotation �15� �see Fig. 5�. The func-
tion G�

f f��� �here defined by �=3D�t�G����� for perpen-
dicular rotation of a couplet that is midway between two
walls with free slip boundary conditions is

G�
f f = �

n=−�

�

exp�−
n2

�
� .

Then the long-time decay of the corresponding velocity au-
tocorrelation function is

��
R,f�t → �� = ���

2 ��
I

�H
� 1

4��t
�2

, �17�

which describes the long-time decay of a 2D fluid with the
effective 2D density �2D=�H. This prediction for the long-
time decay is found to agree with the results obtained from
the lattice-Boltzmann simulations �Fig. 6�. The plot of G�

f f

for a couplet, displayed in Fig. 7, shows a plateau for �
	0.2 for which 3D-like behavior is sustained. The function
G�

f f obtained from the simulation for different wall separa-
tions shows convergence to the predicted couplet results as
the wall separation increases.

On the other hand, the interaction of the fluid with one
wall with a no slip boundary condition does change the func-
tional dependence of the long-time behavior associated with
perpendicular rotation; the long-time form of the algebraic
decay changes from to �t5/2→�t7/2 �15�. The function G�

nn

for a couplet midway between the two walls at which the no
slip boundary condition holds is

G�
nn = �

n=−�

�

�− 1�nexp�−
n2

�
� ,

which gives rise to the following long-time decay of the
AVACF:

��
R,n�t → �� = ���

2 �2�
I

�H
� 1

4��t
�2

e−�2t�/H2
. �18�

In this case the long-time decay is twice the time decay of a
2D fluid with friction coefficient �=�2� /H2. Comparisons
with the data obtained from the lattice Boltzmann simula-
tions, shown in Figs. 8 and 9, verify the predicted long-time
decay. Rotational motion of a particle in a confined geometry
is not effected by density fluctuations as the time relaxation
of this mode of motion is determined by the relaxation of the
vorticity.

VII. SUMMARY

In this paper we have used the singularity method to char-
acterize unsteady linear motion of an incompressible fluid.
To analyze the behavior of a particle in a bounded fluids we
constructed an image system with a discrete set of funda-
mental solutions of the Stokes equation from which we ex-
tracted the long-time decay of the velocity. The singularities
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FIG. 6. ��
R,f f for a spherical particle midway between two free

slip plates from the lattice-Boltzmann simulation normalized by a
long-time decay in Eq. �17�.
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slip plates from the lattice-Boltzmann simulation normalized by a
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were taken to be impulsive forces or torques and their time
evolutions were mapped onto the long-time relaxation of a
solid spherical particle set in motion impulsively. Within this
model, for the case that there are free slip boundary condi-
tions at the confining walls, the time evolution of the parallel
linear velocity and the perpendicular rotational velocity cor-
respond to the long-time algebraic evolution of a 2D fluid
with the effective density �2D=�H. In addition we found that
for parallel linear motion inside a channel with free slip
boundary conditions the long-time decay is exponential with
the effective friction force 4�2� /H2, as in this type of con-
finement a vorticity which controls the algebraic decay is
prevented from developing. For the case that there are no slip
boundary conditions at the confining walls, the same types of
motion correspond to a 2D fluid motion with a frictional
force whose coefficient of friction is �2� /H2 and with addi-

tional prefactor of order 1. The perpendicular linear motion
also experiences an effective friction force coupled to the
long-time dependence proportional to t−2, which cannot be
related to either 3D or 2D fluid motion. The time evolutions
predicted by our hydrodynamic arguments agree with those
obtained from lattice-Boltzmann simulations.

Our incompressible fluid model does not capture all of the
effects of fluid confinement on embedded particle motion if a
vorticity is prevented from developing and so other pro-
cesses control the long-time behavior. In particular, the con-
finement affects the coupling between the density flux and
the velocity field �first investigated in Refs. �3,4��, and
thereby the linear motion of a particle perpendicular to the
walls and the linear motion of a particle parallel to walls at
which there is a no slip boundary condition. For perpendicu-
lar motion the effect of the density coupling appears as ad-
ditional velocity oscillations whose frequency is proportional
to �cs /H and whose time evolution is governed by a damped
wave equation. For parallel no slip motion the confinement
causes slowing down of a density flux that spreads diffu-
sively. This diffusive density flux determines the long-time
decay proportional to −t−2, for two wall confinement, and
−t−3/2, for the channel type of confinement �3,4�. The theory
for incompressible fluids, however, predicts correct self-
diffusion constants �which can be obtained from the Green-
Kubo expression� and is not affected by fluid compressibility
�20�.

ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation funded MRSEC Laboratory at the University of
Chicago.

�1� B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18 �1970�.
�2� R. Zwanzig and M. Bixon, Phys. Rev. A 2, 2005 �1970�.
�3� M. H. J. Hagen, I. Pagonabarraga, C. P. Lowe, and D. Frenkel,

Phys. Rev. Lett. 78, 3785 �1997�.
�4� I. Pagonabarraga, M. H. J. Hagen, C. P. Lowe, and D. Frenkel,

Phys. Rev. E 59, 4458 �1999�.
�5� D. Frydel and S. Rice, Mol. Phys. 104, 1283 �2006�.
�6� C. Pozrikidis, Boundary Integral and Singularity Methods

�Cambridge University Press, New York, 1992�.
�7� C. Pozrikidis, Introduction to Theoretical and Computational

Fluid Dynamics �Oxford University Press, New York, 1997�.
�8� R. Hocquart and E. J. Hinch, J. Fluid Mech. 137, 217 �1983�.
�9� J. P. Hansen and I. R. McDonald, Theory of Simple Liquids,

2nd edition �Academic Press, New York, 1986�.
�10� A. J. Masters and T. Keyes, J. Stat. Phys. 39, 215 �1985�.

�11� J. R. Blake, Prog. Colloid Polym. Sci. 70, 303 �1971�.
�12� N. Liron and S. Mochon, J. Eng. Math. 10, 287 �1976�.
�13� J. R. Blake and A. T. Chwang, J. Eng. Math. 8, 23 �1974�.
�14� C. Pozrikidis, Phys. Fluids A 1, 1508 �1989�.
�15� I. Pagonabarraga, M. H. J. Hagen, C. P. Lowe, and D. Frenkel,

Phys. Rev. E 58, 7288 �1998�.
�16� G. B. Arfken and H. J. Weber, Mathematical Methods for

Physicists �Elsevier Academic Press, New York, 2005�.
�17� P. Amore, Europhys. Lett. 71, 1 �2005�.
�18� L. Bocquet and J.-L. Barrat, J. Phys.: Condens. Matter 8, 9297

�1996�.
�19� S. Ramaswamy and G. F. Mazenko, Phys. Rev. A 26, 1735

�1982�.
�20� L. Bocquet and J.-L. Barrat, Europhys. Lett. 31, 455 �1995�.

0 0.5 1
τ

0

0.5

1

G ⊥
nn

(t
)

no-slip

simulation, H=3.1σ
simulation, H=4.5σ
simulation, H=7.3σ
couplet
couplet, m=-1,1

FIG. 9. G�
nn for rotational motion between two no slip plates as

a function of the reduced time �.

DEREK FRYDEL AND STUART A. RICE PHYSICAL REVIEW E 76, 061404 �2007�

061404-8


